
 1

Survey of Protocols and Mechanisms for
Enhanced Transport over LONG FAT PIPES

Abstract

Standard TCP (TCP Reno) is a reliable transport protocol that is well tuned to
perform well in traditional networks. However, several experiments and
analysis have shown that this protocol is not suitable for bulk data transfer in
high bandwidth, large round trip time networks because of its slow start and
conservative congestion control mechanism. In this document, we review and
compare different emerging alternatives that try to solve this problem in this
particular context of very high speed networks. We believe that these
innovations are phasing into experimental networks and replacing the stock
TCP in high performance networking applications.

Contents

1. Introduction ..2
2. Comparison Criterions ...3
3. Protocols ..5

3.1 Comparison between Two Camps...5
3.2 Reliable UDP Variants ...6

3.2.1 Reliable Blast UDP..6
3.2.2 TSUNAMI..8
3.2.3 SABUL (Simple Available Bandwidth Utilization Library)9
3.2.4 Comparison... 11

3.3 TCP Variants .. 12
3.3.1 HighSpeed TCP.. 12
3.3.2 Scalable TCP .. 14
3.3.3 FAST TCP ... 16
3.3.4 XCP (eXplicit Congestion control Protocol) 18
3.3.5 CADPC / PTP ... 21
3.3.6 GridFTP ... 22
3.3.7 Comparison... 26

4. References.. 27
5. Author Information ... 28

 2

1. Introduction

Existing transport protocols have limitation when they are used in new
application domain and for new network technologies. For example,
multimedia applications need congestion control but not necessarily ordered
reliable delivery. This combination is not offered by TCP [1] or UDP [2]. From
another point of view, TCP has been highly tuned with certain assumptions in
mind. For example, when a data segment is lost, it assumes that this was
most likely due to congestion (i.e. too many segments are contending for
network resources) [3]. But, for example, in wireless it could be because of
bad reception at the location of the user. So many efforts have been proposed
for improving TCP performances in such lossy systems. TCP performance
depends upon the product of the transfer rate and the round-trip delay [4].
TCP survived the days of low bandwidth, high latency, and high error rates.
But for several reason it is today not able to cope efficiently with the evolving
new environment.

In this document, we address the specific problem of transport of bulk data
transfers in grid environment (more than 1Gbyte) over high latency, high
bandwidth, low loss paths. For a Standard TCP connection with 1500-byte
packets and a 100 ms round-trip time, achieving a steady-state throughput of
10 Gbps would require an average congestion window of 83,333 segments,
and a packet drop rate of at most one congestion event every 5,000,000,000
packets (or equivalently, at most one congestion event every 1 2/3 hours) [5] .
This is primarily due to its congestion avoidance algorithm, based on the
Additive Increase Multiplicative Decrease (AIMD) principle. A TCP connection
reduces its bandwidth use by half immediately when a loss is detected
(multiplicative decrease), but takes 1 2/3 hours to use all the available
bandwidth again in this case if no more loss is detected in the mean time.
Apparently Standard TCP does not scale well in high bandwidth, large round-
trip time networks. A lot of efforts are going on to improve performance for
bulk data transfer in such networks. To solve the aforementioned problems,
two main approaches are proposed: One focuses on a modification of TCP
and specifically the AIMD algorithm, the other proposes the introduction of
totally new transport protocols. This is a very active research area in
networks.

In very high speed context, performances or loss can also occur due to
problems on the host (sender or receiver side). We do not consider these
problems in this document. We consider the both cases of shared or not
shared links (e.g. dedicated light path).

This draft document attempts to integrate information drawn from sources
written for a variety of purposes and which use differing terminology. As a
result, this document may be incomplete or contain inaccuracies. Feedback
and corrections are welcome. Contributions describing other protocols are
also welcome. Direct comments to datatransport-rg@gridforum.org.

 3

2. Methodology and Comparison Criterions

2.1 What are the functions of a transport service and the
features of a transport protocol?

Transport layer protocols provide for end to end c ommunication between two
or more host. [6] presents a tutorial on transport layer concepts and
terminology and a survey of transport layer services and protocols. It
classifies the typical services provided by a transport layer. A transport
service abstracts a set of functions that is provided to the high layer. A
protocol, on the other hand refers to details of how a transport sender and a
transport receiver cooperate to provide that service. The following table gives
the transport service features:

. CO_message / CO_byte / CL
. No loss / Uncontrolled loss / Controlled loss
. No duplicate / May be duplicate
. Ordered / Unordered / Paritally_ordered
. Data-integrity / No Data- integrity / Partial Data Integrity
. Blocking / Non Blocking
. Multicast / Unicast
. Priority / Np-priority
. Security / No security
. Status reporting / no status reporting
. Quality of service / No quality of service

The following table gives the transport protocol features:

. Connection oriented / Connection less
. Transaction oriented (one request/one response)
. Connection oriented features
 - signaling in-band / out of band
 - unidirectional / bidirectional
 - connection establishment : implicit/ 2 way / 3 way handshake
 - connection termination : gracefully / ungracefully
. Error control
 - Error detection
 - Error reporting
 - Error recovery
 - Piggybacking
 - Cumulative / Selective acknowledgement
 - Retransmission strategy
 - Duplicate detection
 - Forward Error Correction
. Flow / Congestion control
 - flow control techniques: sliding window / rate control
 - flow control for congestion control: fairness , access control
. Multiplexing / Demultiplexing

 4

. Segementation / Reassembling

2.2 Comparison Criterions

Here we list the criterions we concentrate on when we review and compare
these protocols.

• Performance

Standard TCP is not suitable in high bandwidth, large RTT networks
because of its low performance in throughput. Therefore, the performance
of new protocols should be comparable to TCP in low bandwidth or small
RTT networks and much better than TCP in high bandwidth, large RTT
networks.

• Congestion Control

Existence of congestion control mechanisms is critical in avoiding
congestion collapse. It is important to include reasonable congestion
control mechanism if the transport protocol will be used in Internet or other
best effort public networks. However, is congestion control still necessary
in private networks or quality of service is guaranteed?

• TCP friendly

The term “TCP-friendly” or "TCP-compatible" means that a flow that
behaves under congestion like a flow produced by a conformant TCP. A
TCP-compatible flow is responsive to congestion notification, and in
steady-state uses no more bandwidth than a conformant TCP running
under comparable conditions (drop rate, RTT, MTU, etc.). If we strictly
abide by this requirement all the time, we will be disappointed again in less
congested, large RTT networks. In this document, we only evaluate
whether the protocol is TCP friendly in high-congested networks. All
protocols in this document are not and should not be TCP friendly in LFP
(Long Fat Pipe) networks.

• Intra-Protocol Fairness

There are two kinds of fairness: inter-protocol fairness and intra-protocol
fairness. The former is the fairness when the protocol competes with TCP
connections. The latter is the fairness among the connections using the
protocol. The inter-protocol fairness is the same issue as TCP-compatible.
Intra-protocol fairness will be compared among protocols.

• Easy to deploy

When we have plenty amount of bandwidth in underlying networks, what
applications need immediately is to deploy transport protocols to utilize the
huge bandwidth. In the protocols we are comparing, some need to modify

 5

or rebuild operating system kernel, others are just a user level library
which applications can call immediately.

• Predictable

When we say a protocol is predictable, applications should be able to
predict its performance based on current network conditions such as
available bandwidth, round-trip time, etc. The purpose is two-fold. Firstly
users can tell whether the transport protocol is running correctly by
comparing the prediction and actual performance. Secondly protocol
developers can systematically identify the factors that influence the overall
performance and predict how much benefit any potential enhancement in
the protocol might provide. Usually predictability is provided by creating a
mathematical analytical model for the protocol.

• Target Usage Scenario

“One size fits all” is good but also difficult to accomplish. Before the
network speed grew beyond 10 Mbps several years ago, TCP is almost a
“One Size fits all” transport protocol. Now it’s time to find other solutions
for bulk data transfer in LFP networks. These solutions have different
preconditions or assumption on underlying networks. Some protocols
don't implement congestion control and can only be used in private or
QoS-enabled networks. Other seems to be able to coexist with each other
and with TCP traffic.

3. Protocol Description

3.1 Comparison between Two approaches

Before going through the detail of each protocols and comparing all of them,
we should elaborate the advantages and disadvantages of the two camps.

• Deployable in Internet

TCP variants want to take the place of the current standard TCP. In order to
be deployable in the Internet or public networks, they create mathematical
analytical models and do a lot of simulations to prove the fairness and have
not the tendency to cause congestion collapse and therefore adopt
sophisticated congestion avoidance algorithms. However, the main
motivation of reliable UDP variants is easy to use and good throughput.
Usually they are used by a ve ry small amount of users who own a lot of
bandwidth. Their applications run on such private networks and seek to utilize
the bandwidth as much as possible. They don’t intend to substitute TCP in
the Internet.

 6

• Easy to deploy

Usually reliable UDP variants provide a C or C++ user space library which
high performance applications can call. The users don’t need to modify or
reconfigure the operating system. Instead, TCP variants need patch and
rebuild the kernel, which only system administrators can do.

• Efficiency

Generally TCP variants are implemented in kernel space whereas reliable
UDP variants are implemented in user space. Kernel mechanisms are more
scalable and provide better efficiency.

3.2 Reliable UDP Variants

3.2.1 Reliable Blast UDP

Contacts : Eric He (eric@evl.uic.edu), Jason Leigh (spiff@evl.uic.edu)

URLs / RFCs / Papers

• "Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer", Eric He, Jason Leigh, Oliver Yu and Thomas A. DeFanti,
Proceedings of IEEE Cluster Computing, Chicago, Illinois, September,
2002.

• http://www.evl.uic.edu/cavern/quanta

Principle / Description of Operation

Reliable Blast [7][8] has two goals. The first is to keep the network pipe as full
as possible during bulk data transfer. The second goal is to avoid TCP’s per-
packet interaction so that acknowledgments are not sent per window of
transmitted data, but aggregated and delivered at the end of a transmission
phase. Figure 1 below illustrates the RBUDP data delivery scheme. In the first
data transmission phase (A to B in the figure), RBUDP sends the entire
payload at a user-specified sending rate using UDP datagrams. Since UDP is
an unreliable protocol, some datagrams may become lost due to congestion
or an inability of the receiving host from reading the packets rapidly enough.
The receiver therefore must keep a tally of the packets that are received in
order to determine which packets must be retransmitted. At the end of the
bulk data transmission phase, the sender sends a DONE signal via TCP (C in
the figure) so that the receiver knows that no more UDP packets will arrive.
The receiver responds by sending an Acknowledgment consisting of a bitmap
tally of the received packets (D in the figure). The sender responds by
resending the missing packets, and the process repeats itself until no more
packets need to be retransmitted.

 7

Sender Receiver

…

A

B C D

E F G

UDP data traffic

TCP signaling traffic

Figure 1. The time sequence diagram of RBUDP

Supported operation mode:
disk-to-disk (i.e. file transfer protocol, not general transport),
memory to memory (general transport)

Authentication: No

Implementations / API: Provides C++ API.

Congestion Control Algorithms:
The congestion control is optional. The algorithm is

if (lossRate > 0) {
 Rnew = Rold * (0.95 – lossRate);
}

Rnew is updated sending rate after each round of blasting. Rold is the sending
rate of last round.

Fairness: Not considered.

TCP Friendly: No.

Predictable Performance Model:
The purpose of developing an analytical model for RBUDP is two-fold. Firstly
we wanted to develop an equation similar to the “bandwidth * delay product”
equation for TCP, to allow us to predict RBUDP performance over a given
network. Secondly we wanted to systematically identify the factors that
influenced the overall performance of RBUDP so that we can predict how
much benefit any potential enhancement in the RBUDP algorithm might
provide.

We developed a comprehensive predictable performance model for RBUDP,
please refer to our paper on Cluster 2002 for detail.

 8

Results:
We achieve 680Mbps bulk transfer throughput on a 1Gbps link between
Chicago and Amsterdam. We think the bottleneck is the memory bandwidth
of compute rs in both sides, especially the receiving side. Please read our
paper for the detail result.

Target Usage Scenario:
Bulk data transfer.

Very Aggressive. Only good in private or dedicated networks. The ideal
scenario is that you reserve an end-to-end lightpath before running this
protocol. You should know how much bandwidth you roughly have.
Otherwise you can use iperf or netperf to get the idea.

3.2.2 TSUNAMI

Contacts : Mark Meiss (mmeiss@indiana.edu)

URLs / RFCs / Papers

• Mark R. Meiss “TSUNAMI: A High-Speed Rate -Controlled Protocol for
File Transfer

• README file of tsunami-2002-12-02 release.
http://www.indiana.edu/~anml/anmlresearch.html

Principle / Description of Operation
The goal of Tsunami [9] is to develop high performance file transfe r protocol
(running as a user space application) to transfer files faster in high-speed
networks than that appears possible with standard implementations of TCP.
Tsunami uses UDP for data transfer and TCP for transferring control
information. The UDP datagram size is negotiated during the connection
setup. The length of the file that is to be transferred is also exchanged during
the negotiation phase. Single thread handles both network and disk activity at
the sender side whereas the receiver employs separa te threads for disk and
network activities. Receiver periodically makes retransmission request and
retransmissions have higher priority than normal sends. Receiver periodically
updates the error rate (calculated based on the number of retransmissions in
an interval and previous error rate) to the sender and the sender adjusts its
inter-packet delay based on this value. Receiver sends a complete signal after
receiving all the datagrams. Tsunami allows the user to configure parameters
such as size of the datagram, the threshold error rate (used to adjust sending
rate), size of retransmission queue and acknowledgement interval.

Supported operation mode:
disk-to-disk (i.e. file transfer protocol, not general transport)

Authentication: A simple authentication mechanism is used. Upon
connection establishment, the server sends a small block of random data to
the client. The client xor’s this random data with a shared secret, calculates

 9

MD5 checksum, and transmit the result to server. The server performs the
same operation and verifies that the results are identical.

Implementations / API:
Implementation available at http://www.indiana.edu/~anml/anmlresearch.html

Congestion Control Algorithms:
Limited. Sending rate is reduced when loss rate is more than the user
configurable threshold.

Fairness: Yet to be determined.

TCP Friendly: No

Predictable Performance Model: No

Results:
TSUNAMI recorded mean transmission rate of 850Mb/s for over 17 hours on
the Global Terabit research network between Seattle, Washington and
Brussels, Belgium. Disk activity was omitted and experiment used a virtual
file consisting of short message repeated indefinitely many times. The test
that involved actual disk activity was able to achieve 600 Mbps.

Target Usage Scenario:
Designed for faster transfer of large files over high-speed networks.

3.2.3 SABUL (Simple Available Bandwidth Utilization Library)

Contacts:
Yunhong Gu [ygu@cs.uic.edu]
Robert Grossman [grossman@uic.edu]

URLs / RFCs / Papers
http://sourceforge.net/projects/dataspace/

Principle / Description of Operation
The primary goal of SABUL(Simple Available Bandwidth Utilization
Library) /UDT (UDP-based Data Transfer Protocol) [10] [11] is to utilize the
abundant bandwidth over current long haul networks, such as computational
grids. Fairness is important as well. Particularly, two of the major fairness
objectives are to be independent of RTT and TCP friendly.

SABUL uses UDP to transfer data and TCP to transfer control information.
UDT uses UDP only for both data and control information.

Below is a brief description of data transfer in one direction.

 10

The sender sends out a data packet every inter-packet time, which is updated
by the rate control. However, it cannot send out the packet if the number of
unacknowledged packets exceeds a threshold, updated by the flow control. A
retransmission packet has higher priority than first time packet.

Bit 0:
Flag
= 1

Bit 1-3:
Type

Bit 4-15:
Reserved

Bit 16-31:
ACK ID or Loss
Length

Control Information:
type 000 (handshake): maximum window size,
MTU
type 001 (keep-alive): None
type 010 (ACK): acknowledged sequence
number, RTT, packet arrival speed, estimated
bandwidth
type 011 (NAK): loss information
type 100 (delay increase warning): None
type 110 (ACK2): None

Figure 2: Control Packets Structure

The receiver receives and reorders data packet. If it detects packet loss, an
NAK packet will be sent back reporting the loss. Selective acknowledgement
is used in the protocol, which generates an ACK packet every constant time if
there is any packet to acknowledge.

The receiver also measures the packet arrival speed and the link capacity,
which will be sent back together with the ACK packet.
The sender sends back an ACK2 packet for each received ACK packet, which
is used for the receiver to measure RTT, as well as to decide the next ACK
value (i.e., it must be greater than the last received ACK2).

The receiver also checks the RTT variance to check if there is a delay
increasing trend. If so, it sends back a delay increasing warning packet to the
sender.

Supported operation mode:
memory to memory (general transport)

Authentication:
None.

Implementations / API:
C++ library on Linux/BSD/Solaris.
NS-2 simulation module.

Congestion Control Algorithms:
The SABUL/UDT congestion control algorithm combine rate based control
and window based control.

 11

The window based flow control limits the number of unacknowledged packets,
and the window size is updated to the product of receiver side packet arrival
speed * (RTT + SYN), where SYN is the constant increase interval.

The rate control changes the inter-packet sending time according to packet
delay and packet loss. It is using AIMD algorithm, where the decrease factor
is 1/9, while the increase factor is related to the link capacity, which is probed
using data packet pairs. Note that the increase is not based on any interval
related to RTT, but is constant and fixed in SABUL/UDT.

Packet delay increasing trend is detected through the variance of RTT.

The slow start begins with 2-packet flow window and 0 inter-packet interval
sending rate. Once an ACK is received, flow window is updated to the number
of acknowledged packets until a loss report or a delay increase warning is
received, when slow start ends. Sending rate keeps unchanged during slow
start phase.

Fairness:
For single bottleneck scenario, the congestion control algorithm is basically
AIMD, and it guarantees intra-protocol fairness.

In addition, the fairness is approximately independent to network delay, i.e.,
connections sharing the same bottleneck but with different RTTs can share
the bottleneck bandwidth fairly (equally, in this case).

TCP Friendly:
Yes. Since SABUL/UDT uses delay as sign of congestion, when coexisting
with TCP, TCP will occupy most of the bandwidth unless it itself fails to utilize
(e.g., because TCP’s inefficiency over high BDP network).

Predictable Performance Model:
No. we have not reached a theoretical model to measure the performance
accurately. Simulation shows that SABUL/UDT can still reach more than 90%
utilization of bandwidth at 1Gbps with 100ms RTT.

Results:
At SC ’02, 3 SABUL flows reach 2.8Gbps aggregate throughput between
Chicago and Amsterdam.

Target Usage Scenario:
SABUL/UDT is general purpose transport protocol.

3.2.4 Comparison

RBUDP

Tsunami

SABUL

 12

Principle UDP data + TCP
control.

UDP data + TCP
control.

UDP data + TCP
control.

Operation
Mode

Disk-to-disk,
memory-to-memory.

disk-to-disk (i.e. file
transfer protocol, not
general transport)

Disk-to-disk,
memory-to-memory.

Authentication No. Yes but very simple. No.

FTP syntax No.

Partially. Only a few
commands like
connect, get, close,
etc.

Partially. Only supports
one connection one
time.

Application
Programming
Interface

Yes. No. Yes.

3rd Party
Transfer No. No. No.

Congestion
Control

Optional. Limited
congestion control
can be turned on.

Limited. Sending rate
is reduced when loss
rate is more than a
threshold.

Yes.

Fairness N/A N/A Yes.

TCP Friendly No. No. Yes.

Predictable
Performance
Model

Yes. No. No.

Implementation Available. Available. Available.

3.3 TCP Variants

3.3.1 HighSpeed TCP

Contacts: Sally Floyd (floyd@icir.org)

URLs / RFCs / Papers:

• “HighSpeed TCP for Large Congestion Windows,” Sally Floyd, Internet
draft draft-floyd-tcp-highspeed-02.txt, Work in progress, February 2003.

• http://www.icir.org/floyd/hstcp.html

Principle / Description of Operation
HighSpeed TCP [5] aims at improving the loss recovery time of standard TCP
by changing standard TCP’s AIMD algorithm. This modified algorithm would
only take effect with higher congestion windows. i.e,

If congestion window <= threshold, use Standard AIMD algorithm
Else use HighSpeed AIMD algorithm

 13

Standard TCP HighSpeed TCP

The standard AIMD algorithm is as
follows:

on the receipt of an acknowledgement,
w = w + 1/w ; w -> congestion window
and in response to a congestion event,
w = 0.5 * w

The increase and decrease parameters
of the AIMD algorithm are fixed at 1 and
0.5

With a 1500-byte packets and a 100 ms
RTT, achieving a steady state throughput
of 10 Gbps would require a packet drop
rate at most once every 1 2/3 hours

The modified HighSpeed AIMD algorithm is as
follows:

on the receipt of an acknowledgement,
w = w + a(w)/w; higher ‘w’ gives higher a(w)
and in response to a congestion event,
w = (1 -b(w))*w; higher ‘w’ gives lower b(w)

The increase and decrease parameters vary
based on the current value of the congestion
window.

For the same packet size and RTT, a steady
state throughput of 10 Gbps can be achieved
with a packet drop rate at most once every
12 seconds

Supported operation mode:
Memory to memory (general transport)

Authentication: No

Implementations / API:

• http://www-unix.mcs.anl.gov/~kettimut/hstcp/ HighSpeed TCP
implementation for Linux 2.4.19 and initial experimental results from
Argonne National Lab.

• http://www.web100.org Tom Dunigan has added HighSpeed TCP to
the Linux 2.4.16 Web100 kernel.

• http://www-iepm.slac.stanford.edu/monitoring/bulk/fast/ Experiments of
TCP Stack measurements , from SLAC comparing HighSpeed TCP,
FAST TCP, Scalable TCP, and stock TCP.

• http://www.hep.man.ac.uk/u/garethf/hstcp/ HighSpeed TCP
implementation from Gareth Fairey at Manchester University, for Linux
2.4.19, and initial experimental results with Yee-Ting Li (from UCL).

Congestion Control Algorithms: HighSpeed TCP retains the slow start
phase of the standard TCP’s congestion control algorithm and the congestion
avoidance phase is modified as explained above.

Fairness: The issue of fairness is not explored thoroughly.

TCP Friendly: Unfriendliness increases with decreasing packet drop rates

Predictable Performance Model: The increase and decrease parameters
are based on a modified response function. More explanation on the rationale

 14

behind the new response function and how it can achieve high throughput
with realistic packet loss rates is available in the IETF draft.

Results: Initial experimental results conducted over 100 Mbps link between
Argonne National Lab, IL and Lawrence Berkeley National Lab, CA show that
HighSpeed TCP performs much better than the standard TCP achieving an
improvement of 150%. The round trip time of the connection is 60 ms. The
results conducted over 1 Gbps link between Lawrence Berkeley National Lab,
CA and Oak Ridge National Lab, TN (with an RTT of 80 ms) show an
improvement of 120% for HighSpeed TCP over the standard TCP.

Target Usage Scenario: Initial experimental shows that it performs much
better than standard TCP in a dedicated environment. Deployment of this in
the broader internet might affect the standard TCP flows.

3.3.2 Scalable TCP

Contacts : Tom Kelly (ctk21@cam.ac.uk) Cambridge University, UK

URLs / RFCs / Papers:

• Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide
Area Networks,” First International Workshop on Protocols for Fast
Long-Distance Networks, Geneva, February 2003

• http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

Principle / Description of Operation
The main goal of Scalable TCP [12] is to improve the loss recovery time of the
standard TCP. The idea is built on the idea of HighSpeed TCP.

Packet loss recovery times for a traditional TCP connection (as well as
HighSpeed TCP connection) are proportional to the connection’s window size
and RTT whereas a Scalable TCP connection’s packet loss recovery times
are proportional to connection’s RTT only.

Slow start phase of the original TCP algorithm is unmodified. The congestion
avoidance phase is modified as follows:

For each acknowledgement received in a round trip time,

Traditional TCP Scalable TCP

cwnd = cwnd + 1/cwnd cwnd = cwnd + 0.01

and on the first detection of congestion in a given round trip time

 15

Traditional TCP Scalable TCP

cwnd = cwnd – 0.5 * cwnd cwnd = cwnd – 0.125 * cwnd

Like HighSpeed TCP this has a threshold window size and the modified
algorithm is used only when the size of the congestion window is above the
threshold window size. Though values of 0.01 and 0.125 are suggested for
the increase and decrease parameters, they (as well as threshold window
size) can be configured using the proc file system (by a superuser). The
default threshold window size is 16 segments.

Supported operation mode:
Memory to memory (general transport)

Authentication: No

Implementations / API:
An implementation for linux kernel 2.4.19 is available at
http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

Congestion Control Algorithms: This work focuses on the congestion
control algorithms and proposes a modification for the congestion control
algorithm used in the standard TCP.

Fairness: No

TCP Friendly: Claims it does not affect the other standard TCP flows and
shows some experimental results involving web traffic to substantiate the
claim. More exploration is required before any conclusion can be arrived at
this.

Predictable Performance Model: The values of ‘a’ and ‘b’ are selected by
considering the convergence speed and instantaneous rate variation. The
goal was to have faster convergence and smaller instantaneous rate variation.

Results:
The experiments were conducted using a testbed consisting of 12 high
performance PCs (6 in Chicago and 6 in CERN, Geneva). The clusters are
connected through 2 cisco routers with a 2.4 Gbps link. The PCs are
connected to each router through gigabit ethernet ports. The roundtrip time of
the connection is 120 ms.

A modified kernel with device transmit queue and receive queue increased to
2000 and 3000 respectively is called gigabit kernel. A significant throughput
improvement of 60% to 180% was observed with gigabit kernel compared to
standard kernel and a further improvement of 34% to 175% was observed
with scalable TCP compared to gigabit kernel Using 16 scalable tcp flows
81% of the maximal performance possible was achieved

 16

Target Usage Scenario:
This is intended to improve the performance of bulk data transport of large
data sets with negligible impact on the network traffic. Detailed analysis of the
impact on web traffic is yet to be done.

3.3.3 FAST TCP

Contacts : Steven Low (slow@caltech.edu)

URLs / RFCs / Papers:

• “FAST TCP: From Theory to Experiments”, C. Jin, D. Wei, S. H. Low,
G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle, W.
Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, S. Singh;
submitted to IEEE Communications Magazine, April 1, 2003

• http://netlab.caltech.edu/FAST/

Principle / Description of Operation

FAST TCP [13] aims to adjust source’s sending rate so that link resource is
shared fairly by all TCP connections and congestion is avoided with maximum
link utilization. Fast TCP totally discards fundamental mechanisms in TCP
such as slow start, AIMD and congestion avoidance. Instead, its objective is
achieved by implementing two control mechanisms. One is implemented at
the source to adjust the send rate dynamically based on an equation and
another one is to obtain a congestion measure based on the aggregate flow
rate on a link. FAST TCP is similar to TCP in 1) FAST TCP uses same
acknowledgement mechanism for reliable delivery; 2) and FAST TCP uses
windowing mechanism to control the send rate at the source.

FAST TCP is improved based on a prime-dual model where TCP protocol is
modeled by a nonlinear closed-feedback and time-delay control system.
Current TCP is not stable when used in a network with high product of
capacity and delay. Therefore, to stabilize the send rate at the source, FAST
TCP applies an equation to adjust the send rate at the source rather than
adopts TCP’s AIMD mechanism to control the send rate. The equation for
adjusting send rate is obtained by proper parameter assignment and pole -
zero placement using Nyquist stability analysis. By properly choosing the
equation, FAST TCP can achieve its objective for high performance, stability
and fairness in general networks.

FAST TCP is actually a modified version of TCP Vegas . TCP Vegas was
introduced as an alternative to the standard TCP (TCP Reno). Vegas does
not involve any changes to TCP specification. It is merely an alternative
implementation of TCP and all the changes are confined to the sending side.
In contrast to the standard TCP, which uses packet loss as the measure of
congestion, Vegas source anticipates the onset of congestion by monitoring

 17

the difference between the rate it is expecting to see and the rate it is actually
realizing. Vegas’s strategy is to adjust the source’s sending rate in an attempt
to keep a small number of packets buffered in the routers along the path.
Although experimental results show that Vegas achieves better throughput
and fewer losses than standard TCP, Vegas lacked a theoretical explanation
of why it works. Here they develop a model of Vegas and show that Vegas
can potentially scale to high bandwidth network in stark contrast to the
standard TCP. Further, they show that Vegas can become unstable at large
delay. Also error in RTT estimation can distort Vegas and can lead to
persistent queues and unfair rate allocation. They show that by augmenting
Vegas with appropriate Active Queue Management algorithm like Random
Exponential Marking (which requires modification in the router), it is possible
to avoid the above- mentioned problems. FAST TCP aims at solving those
problems by modifying just the TCP kernel at the sending hosts. Detailed
description of the algorithm and implementation of FAST TCP is yet to be
published (as on 6/1/03, should be out in a couple of months)

Supported operation mode:
Memory to memory (general transport)

Authentication: No

Implementations / API:
Not available yet (as on 6/1/03)

Congestion Control Algorithms:
The congestion control algorithm in FAST TCP is built on the algorithm used
in TCP Vegas.

Fairness:
Fair bandwidth allocation is one of the main objectives of FAST TCP but the
detail about the mechanism used is yet to be published.

TCP Friendly:
Still under study

Predictable Performance Model:
This work was motivated by their earlier work, which developed a TCP/AQM
congestion control system to achieve high utilization, low delay and dynamic
stability at the level of fluid-flow models. But the algorithm used in FAST TCP
and the theoretical explanation of why it should work is not published yet.

Results:
FAST TCP was demonstrated in a series of experiments conducted during the
SuperComputing conference (SC2002). The demonstrations used an OC192
(10Gbps) link between StarLight (Chicago) and Sunnyvale, the DataTAG 2.5
Gbps link between Sta rlight and CERN (Geneva), an OC192 link connecting
the SC2002 show floor in Baltimore and the TeraGrid router in StarLight
Chicago and Abilene backbone of Internet2.

 18

Using default device queue size (txqueuelen = 100 packets) at the network
interface card and the standard MTU of 1500 bytes, the default Linux TCP
(2.4.18), without any tuning on the AIMD parameters, achieved an average
throughput of 185 Mbps, averaged over an hour, with a single TCP flow
between Sunnyvale in California and CERN in Geneva via StarLight in
Chicago with a minimum round trip delay of 180 ms. This is out of a possible
maximum of 973 Mbps to the application, excluding TCP/IP overhead, limited
by the gigabit Ethernet card, and represents a utilization of just 19%. Under
the same experimental conditions, using the default device queue size
(txqueuelen = 100 packets) and the standard MTU of 1500 bytes, FAST TCP
achieved an average throughput of 925 Mbps (Utilization 95%), averaged
over an hour. Even with a device queue size of 10,000 packets, the standard
TCP was able to achieve a throughput of only 266 Mbps (Utilization 27%).
With 2 TCP flows sharing the path, standard TCP was able to achieve 48%
utilization (txqueuelen = 10,000 packets) whereas FAST TCP was able to
achieve 92% utilization. With 10 flows, FAST TCP achieved a throughput of
8,609 Mbps (utilization 88%), averaged over a 6-hour period, over a routed
path between Sunnyvale and Baltimore, using the standard MTU. The results
using the standard Linux TCP implementation for 10 flows are not shown.
In all the experiments described above, the bottleneck was either the gigabit
Ethernet card or the transatlantic OC48 link. The experiments conducted
using Intel’s pre -release experimental 10-gigabit Ethernet card on a single
flow from Sunnyvale to Chicago using standard MTU, FAST TCP sustained
just 1.3 Gbps. They claim this was due to the limitation in the CPU power at
the sending and receiving systems.

Target Usage Scenario: Though it is intended to solve TCP’s limitation in
high-bandwidth large-delay environments, it is expected to perform well in
conventional environments too.

3.3.4 XCP (eXplicit Congestion control Protocol)

Contacts : Dina Katabi (dk@mit.edu)

URLs / RFCs / Papers:

• “Congestion Control for High Bandwidth -Delay Product Networks,”
Dina Katabi, Mark Handley and Chalrie Rohrs, Proceedings on ACM
Sigcomm 2002.

• http://www.ana.lcs.mit.edu/dina/XCP/

Principle / Description of Operation
XCP [14] generalizes the Explicit Congestion Notification (ECN) proposal.
Instead of one bit congestion indication used by ECN, it proposes using
precise congestion signaling, where the network explicitly tells the sender the
state of congestion and how to react to it.

Like TCP, XCP is a window based congestion control protocol intended for
best effort traffic. Senders maintain their congestion window (cwnd) and RTT

 19

and communicate this to routers via a congestion header (shown in figure 3)
in every packet. Sender uses the feedback field in the congestion header to
request its desired window increase. Routers monitor the input traffic rates to
each of their output queues. Based on the difference between the link
bandwidth and its input traffic, router tells the flows sharing that link to
increase or decrease their congestion window. It does this by annotating the
congestion headers of data packets. Feedback is divided between flows
based on their congestion window and RTTs so that the system converges to
fairness. A more congested router later in the path can further reduce the
feedback in the congestion header by overwriting it. Ultimately the packet will
contain the feedback from the bottleneck along the path. When the feedback
reaches the receiver, it is returned to the sender in an acknowledgment
packet, and the sender updates its cwnd accordingly.

Figure 3: Congestion header

Whenever a new acknowledgment arrives, positive feedback increases the
sender’s cwnd and negative feedback reduces it. An XCP receiver is similar to
TCP receiver except when acknowledging a packet it copies the congestion
header from the data packet to its acknowledgment.

XCP also introduces the concept of decoupling utilization control from fairness
control. A router has both an efficiency controller and fairness controller. The
purpose of efficiency controller is to maximize link utilization while minimizing
drop rate and persistent queues. It only looks at aggregate traffic and need
not care about fairness issues. It computes aggregate feedback at every
interval (average RTT of all the flows sharing the link). The aggregate
feedback is proportional to both spare bandwidth and persistent queue size.
How exactly this aggregate feedback is divided among the packets is the job
of the fairness controller. The fairness controller uses the same principle TCP
uses (AIMD) to converge to fairness. If the aggregate feedback is positive,
allocate it so that the increase in throughput of all flows is the same and if it is
negative, allocate it so that the decrease in throughput of a flow is proportional
to its current throughput.

Supported operation mode:
Memory to memory (general transport)

Sender’s current cwnd (filled by
sender and remains unmodified)

Sender’s RTT estimate (filled by
sender and remains unmodified)

Feedback (initialized to sender’s
demands; can be modified by the
routers)

 20

Authentication: No

Implementations / API:
XCP implementation in the NS simulator is available at
http://www.ana.lcs.mit.edu/dina/XCP/

Congestion Control Algorithms:
XCP is a congestion control algorithm.

Fairness:
Demonstrates a fairness mechanism and shows how to use it to implement
both min-max fairness and the shadow prices model.

TCP Friendly:
Describes a mechanism that allows XCP to compete fairly with TCP but it
involves additional work in the routers. Simulation results have been used to
demonstrate TCP friendliness of the proposed mechanism.

Predictable Performance Model:
Theoretical analysis on the stability of the protocol and its convergence to
fairness can be found in the paper. It is shown to be stable for any link
capacity, feedback delay or number of sources.

Results:
The simulations were conducted using the packet level simulator ns -2. The
simulations cover link capacities in the range 1.5 Mbps to 4 Gbps, RTTs
between 10 ms to 3 sec and number of sources in the range between 1 and
1000. Further, they simulate 2 way traffic and dynamic environments with
arrivals and departures of short web like flows. Simulations also show that
their results generalize to large and more complex topologies.

They compare XCP with TCP Reno over various Active Queue Management
schemes such as RED (Random Early Detection), REM (Random Exponential
Marking), AVQ (Adaptive Virtual Queue) and CSFQ (Core Stateless Fair
Queuing). The results show that XCP significantly outperforms TCP (with all
queuing schemes) in high bandwidth environments as well as in high delay
environments. They also show that XCP is efficient in environments with
arrivals and departures of short web-like flows. In an environment where the
RTTs of the flows that share the bottleneck link vary widely from one another,
XCP provides a significantly fairer bandwidth allocation than TCP. They also
show how XCP can be used to provide differentiated services to the users
based on the price they pay and how XCP can be deployed and how it can
gracefully co-exist with TCP.

Target Usage Scenario:
Though XCP is intended to solve TCP’s limitation in high-bandwidth large-
delay environments, simulation results show that it performs well in
conventional environments too.

 21

3.3.5 CADPC / PTP

Contacts
Michael Welzl, University of Innsbruck
email: michael.welzl@uibk.ac.at web: http://come.to/michael.welzl or
http://informatik.uibk.ac.at/users/c70370/

URLs / RFCs / Papers
The PTP website is at http://fullspeed.to/ptp or
http://informatik.uibk.ac.at/users/c70370/research/projects/ptp/
CADPC / PTP is mainly the result of a Ph.D. thesis, which is finished and
currently in print; a .pdf file is available upon request. A published paper
containing some details about CADPC is:

Welzl, M.: "Traceable Congestion Control", ICQT 2002 (International
Workshop on Internet Charging and QoS Technologies), Zürich, Switzerland,
16-18 October 2002. Springer LNCS 2511, available from the PTP website.

Principle / Description of Operation
PTP [15], the “Performance Transparency Protocol”, is a lightweight signaling
protocol that queries routers along a path for performance related information;
when used for congestion control purposes , this information consists of:

• the router address
• the MIB2-ifSpeed object (nominal link bandwidth)
• the MIB2-ifOutOctets object (traffic counters)
• a timestamp

At the receiver, it is possible to calculate the bandwidth that was available at
the bottleneck during a certain period from two consecutive packets carrying
this information for all routers along the path. This operation resembles ATM
ABR Explicit Rate Feedback, but work in routers is minimized, all calculations
are moved need to network endpoints.

CADPC, “Congestion Avoidance with Distributed Proportional Control”, is a
congestion control scheme that is solely based on PTP feedback. Since it
does not rely on packet loss, it works seamlessly over wireless links. It is
slowly responsive in that it utilizes a small amount of feedback, but it shows
quick convergence.

Among its outstanding features / properties are:

• good scalability
• fully distributed convergence to max-min-fairness irrespective of RTTs
• designed for heterogeneous links and links with a large bandwidth X

delay product
• since it only relies on PTP, it is easily traceable
• simple underlying control law (logistic growth) which is known to be

stable
• very smooth rate

 22

Supported operation mode:
memory to memory (general transport)

Authentication: no

Implementations / API: Code is available from the website; future releases
will be available from this site, too. Currently, there is:

• A PTP end system and router implementation for Linux
• PTP code for the ns-2 simulator

CADPC was only implemented for the ns -2 simulator so far and will be made
available via the PTP website soon.

Congestion Control Algorithms: CADPC is the congestion control
algorithm.

Fairness: max-min fairness, could probably be extended to support other
forms of fairness (such as proportional fairness) too.

TCP Friendly: No.

Predictable Performance Model: In a network with n users, CADPC
converges to 1/(n+1) for each user; thus, the total traffic converges to n/(n+1),
which quickly converges to 1 with a growing number of users (these
calculations are normalized with the bottleneck capacity). With a VERY small
number of users (say, 2 or 3), CADPC is inefficient.

Results:
In simulations, CADPC outperformed several TCP variants and TCP-friendly
mechanisms in a large variety of scenarios and in several aspects; in
particular, it showed greater throughput than its competitors with close to zero
loss. Please see the “traceable congestion control” paper for more details.

Target Usage Scenario:
This protocol is intended for bulk data transport of large data sets. It will work
well in scenarios with highly asymmetric links, noisy links and links with a
large bandwidth X delay product. It will have trouble if this product is very
small. In its present form, it must be isolated from other traffic and will not
work well in the presence of short web-like flows or long-term TCP flows. A
closer look at CADPC in isolation (usage to control traffic management, or
isolated via QoS mechanisms – e.g., by using it within a DiffServ class) is
currently under research.

3.3.6 GridFTP

Contact: Bill Allcock (allcock@mcs.anl.gov)

URLs / RFCs / Papers

 23

• “GridFTP: Protocol Extensions to FTP for the Grid”, W. Allcock, J.

Bester, J. Bresnahan, S. Meder, S. Tuecke, Global Grid Forum Draft
• “Data Management and Transfer in High Performance Computational

Grid Environments”. B. Allcock, J. Bester, J. Bresnahan, A. L.
Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnal, S. Tuecke. Parallel Computing Journal, Vol. 28 (5), May 2002,
pp. 749-771.

• http://www-fp.globus.org/datagrid/gridftp.html

Principle / Description of Operation
GridFTP [16] is a high-performance, secure, reliable data transfer protocol
optimized for high -bandwidth wide-area networks. It provides a superset of
the features offered by various Grid storage systems currently in use by
extending the standard FTP protocol. GridFTP builds on RFC 959 (File
Transfer Protocol (FTP)), RFC 2228 (FTP Security Extensions), RFC 2389
(Feature negotiation mechanism for FTP), IEFT draft on FTP Extensions.
As defined in the FTP protocol standard it uses two types of channels
between the source and the destination namely control channel and data
channel. The control channel is used to exchange commands and replies
whereas the data channel is used to transfer data. It provides support for
parallel data transfer using multiple TCP streams between the source and the
destination.
GridFTP also provides support to transfer data that is striped across multiple
hosts by using 1 or more TCP streams between m hosts on the sending side
and n hosts on the receiving side. GridFTP allows an authenticated third-party
to initiate, monitor and control a data transfer between storage servers.
Checkpointing is used to provide fault tolerance. A failed transfer is restarted
from the last checkpoint. It extends the partial transfer mechanism defined in
the standard FTP to support transfers of arbitrary subsets of a file. GridFTP
also allows manual or automatic control of TCP buffer size.

Supported operation mode:
File transfer protocol

Authentication:
It implements the authentication mechanisms defined by RFC 2228 (FTP
Security Extensions). It supports GSI (Grid Security Infrastructure) and
Kerberos authentication with user controlled setting of various levels of data
integrity and/or confidentiality.

Implementations / API:
GridFTP is the data management component of the Globus toolkit. It is
available at http://www.globus.org/

Congestion Control Algorithms:
As GridFTP uses TCP as the underlying transport mechanism, the congestion
control algorithm is same as that of TCP.

 24

Fairness: Same as TCP

TCP Friendly: Yes

Results:
In the experiments demonstrated during SC 2000 between 8 workstations on
SC exhibition floor in Dallas, Texas and 8 workstations at Lawrence Berkeley
National Lab in California, peak transfer rates of 1.5 Gbps over an interval of
0.1 seconds and 1.03 Gbps over an interval of 5 seconds and a sustained
transfer rate of 513 Mbps over 1 hour were achieved. The bottleneck link was
a 1.5 Gbps link. The experiments used striped data transfer with 8 striped
servers at source and 8 striped servers at destination with a maximum of 4
TCP streams per server. Also, the experimental results show that GridFTP
can achieve 78% of the throughput achieved by iperf. The performance
difference is attributed to overheads such as authentication, checkpointing etc.

Target Usage Scenario:
Though it is intended for high bandwidth networks, it can be used in
conventional environments too.

3.3.8 SCTP (Stream Control Transport Protocol)

Contacts : Pascale Vicat-Blanc Primet (Pascale.Primet@ens-lyon.fr)

URLs / RFCs / Papers

• Ivan Arias Rodriguez: Stream Control Transmission Protocol - The

Design of a New Reliable Transport Protocol for IP Networks (this
documentation is very detailed and very clear, but long to read...)

• http://tdrwww.exp-math.uni-
essen.de/inhalt/forschung/sctp_fb/index.html

• A. Jungmaier, E.P Rathgeb, M. Schopp, M. Tüxen : SCTP - A multi-link
end-to-end protocol for IP -based networks, AEÜ - International Journal
of Electronics and Communications, 55 (2001) No.1, pp. 46-54
(interesting to have an overview of multi-homing applications)

• RFC 2960: SCTP -- The Stream Control Transmission Protocol, R.
Stewart, Q. Xie and al. (the reference for the SCTP protocol)

• http://www.sctp.org/sctpoverview.html (good for beginners...)

Principle / Description of Operation
The Stream Control Transmission Protocol (SCTP) is a new IP transport
protocol, existing at an equivalent level as UDP (User Datagram Protocol) and
TCP (Transmission Control Protocol), which currently provide transport layer
functions to all of the main Internet applications. SCTP has been approved by
the IETF as a Proposed Standard, and is currently awaiting allocation of an
RFC number.

 25

Originally, SCTP was designed to provide a general-purpose transport
protocol for message-oriented applications, as is needed for the transportation
of signaling data. It has been designed by the IETF SIGTRAN working group ,
which has released the SCTP standard draft document (RFC2960) in October
2000.

Unlike TCP, SCTP provides a number of functions that are considered critical
for signaling transport, and which at the same time can provide transport
benefits to other applications requiring additional performance and reliability.
SCTP can be used as the transport protocol for applications where monitoring
and detection of loss of session is required. For such applications, some
SCTP failure detection mechanisms have been implemented.

The core original features of SCTP are multi-streaming and multi-homing.

Protocol Features:

SCTP is a unicast protocol, and supports data exchange between exactly 2
endpoints, although these may be represented by multiple IP addresses.
SCTP provides reliable transmission, detecting when data is discarded,
reordered, duplicated or corrupted, and retransmitting damaged data as
necessary.
SCTP transmission is full duplex.
SCTP is message oriented and supports framing of individual message
boundaries. In comparison, TCP is stream oriented and does not preserve
any implicit structure within a transmitted byte stream.
SCTP is rate adaptive similar to TCP, and will scale back data transfer to the
prevailing load conditions in the network. It is designed to behave
cooperatively with TCP sessions attempting to use the same bandwidth.

In TCP a stream is referred to as a sequence of bytes, but an SCTP stream
represents a sequence of messages (which may be very short or long). The
multi-streaming feature allows data to be partitioned into multiple streams that
have the property of being delivered independently, so that message loss in
any of the streams will only affect delivery within that stream, and not in other
streams. In contrast, TCP provides a single stream of data and ensures that
delivery of that stream takes place with perfect sequence preservation but
causes additional delay when message loss or sequence error occurs within
the network. It has been shown that this feature lead too very poor
performances on bulk transfer on lossy long bandwidth delay-product links.

The multi-homing is the ability for a single SCTP endpoint to support multiple
IP addresses. Using multi-homed SCTP, redundant LANs can be used to
reinforce the local access, while various options are possible in the core
network to reduce the dependency of failures for different addresses. In its
current form, SCTP does not do load-sharing, that is, multi-homing is used for
redundancy purposes only.

Supported operation mode: Transport protocol

 26

Authentication: none

Implementations / API: SCTP API

Congestion Control Algorithms: TCP AIMD

Fairness: yes

TCP Friendly: yes.

Predictable Performance Model: yes

Results: The actual SCTP implantation in LINUX seems to offer lower
performance than the TCP ones that are generally well optimised (around
10%). SCTP Performance and usage evaluation and algorithm enhancement
is actually performed within the INRIA project RESO (http://www.ens -
lyon.fr/LIP/RESO/SCTP)

3.3.9 Comparison

HS TCP

Scalable
TCP

FAST TCP

XCP

CADPC/PTP GridFTP

Principle

Modify TCP
response
function
when
congestion
window is
larger than a
threshold.

More
aggressive in
congestion
control.

Based on
TCP vegas.

Decouple
efficiency
control and
fairness
control.
Former uses
MIMD and
latter uses
AIMD.

Conges tion
control based
on feedback
from routers.

Multiple
parallel TCP
streams

Operation
Mode

Memory-to-
memory.
Kernel space.

Memory-to-
memory.
Kernel
space.

Memory-to-
memory.

Memory-to-
memory.

Memory-to-
memory.

File transfer
protocol

Authenticati
on No. No. No. No. No. GSI and

Kerberos

FTP syntax No. No. No. No. No. Yes.

Congestion
Control Yes. Yes. Yes. Yes. CADPC Yes.

Need to
modify
router
software

No. No.
Better if using
AQM routers Yes. Yes. No.

Fairness
Need more
investigation. No.

Need more
investigation. Yes.

Max-min
fairness Yes.

TCP
Friendly

No when new
TCP

Need more
investigation.

Need more
investigation. Yes. No. Yes.

 27

response
function is
triggered.

Predictable
Performance
Model

Yes. Yes.
Need more
investigation. Yes. Yes. No.

Simulation
and
Implementat
ion

Both Implementati
on

Not
published.

Both. Both. Implementati
on.

4. References

[1] Postel, J. B. Transmission Control Protocol. RFC 793, September 1981.

[2] Postel, J. B. User Datagram Protocol. RFC 768 , September 1980.

[3] Allman, Paxson, et al. TCP Congestion Control, RFC 2581, April 1999.

[4] Jacobson, Braden, et al. TCP Extensions for High Performance, RFC 1323,
May 1992.

[5] HighSpeed TCP for Large Congestion Windows, Sally Floyd, Internet draft
draft-floyd -tcp-highspeed-02.txt, Work in progress, February 2003.

[6] Iren, S. and Amer, P. The transport layer: tutorial and survey. ACM
Computing survey, vol. 31, N°4, December 1999.

[7] E. He, J. Leigh, O. Yu, T.A. DeFanti, “Reliable Blast UDP: Predictable High
Performance Bulk Data Transfer,” Proceedings of IEEE Cluster Computing
2002.

[8] E. He, J. Alimohideen, J. Eliason, N. Krishnaprasad, J. Leigh, O. Yu, T. A.
DeFanti, “QUANTA: A Toolkit for High Performance Data Delivery over
Photonic Networks,” to appear in Future Generation Computer Systems,
Elsevier Science Press.

[9] README file of tsunami-2002-12-02 release. http://www.indiana.edu/
~anml/anmlresearch.html

[10] Yuhong Gu, Xinwei Hong, Marco Mazzucco, and Robert L. Grossman,
SABUL: A High Performance Data Transport Protocol, 2002, submitted for
publication.

[11] Yuhong Gu, Xinwei Hong, Marco Mazzucco, and Robert L. Grossman,
Rate Based Congestion Control over High Bandwidth/Delay Links, 2002,
submitted for publication.

 28

[12] Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide
Area Networks,” First International Workshop on Protocols for Fast Long
Distance Networks, Geneva, February 2003

[13] FAST TCP: From Theory to Experiments , C. Jin, D. Wei, S. H. Low, G.
Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle, W. Feng, O.
Martin, H. Newman, F. Paganini, S. Ravot, S. Singh; submitted to IEEE
Communications Magazine, April 1, 2003

[14] Congestion Control for High Bandwidth-Delay Product Networks, Dina
Katabi, Mark Handley and Chalrie Rohrs, Proceedings on ACM Sigcomm
2002.

[15] Welzl, M.: "Traceable Congestion Control", ICQT 2002 (International
Workshop on Internet Charging and QoS Technologies), Zürich, Switzerland,
16-18 October 2002. Springer LNCS 2511, available from the PTP website.

[16] Data Management and Transfer in High-Performance Computational Grid
Environments. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Parallel
Computing, 2001.

5. Author Information

Eric He
Electronic Visualization Laboratory, University of Illinois at Chicago.
eric@evl.uic.edu

Rajkumar Kettimuthu
Argonne National Laboratory
kettimut@mcs.anl.gov

Yunhong Gu
Laboratory for Advanced Computing, University of Illinois at Chicago
gu@lac.uic.edu

Sanjay Hegde
Argonne National Laboratory
hegdesan@mcs.anl.gov

Michael Welzl
University of Innsbruck, Austria
michael.welzl@uibk.ac.at

Pascale Vicat-Blanc Primet
INRIA, France
Pascale.Primet@ens-lyon.fr

 29

Jason Leigh
Electronic Visualization Laboratory, University of Illinois at Chicago.
spiff@evl.uic.edu

Chaoyue Xiong
Electronic Visualization Laboratory, University of Illinois at Chicago.
cxiong1@uic.edu

